Hierarchical clustering of spatially correlated functional data
نویسندگان
چکیده
Classification problems of functional data arise naturally in many applications. Several approaches have been considered for solving the problem of finding groups based on functional data. In this paper we are interested in detecting groups when the functional data are spatially correlated. Our methodology allows to find spatially homogeneous groups of sites when the observations at each sampling location consist of samples of random functions. In univariable and multivariable geostatistics various methods of incorporating spatial information into the clustering analysis have been considered. Here we extend these methods to the functional context in order to fulfill the task of clustering spatially correlated curves. In our approach we initially use basis functions to smooth the observed data and then we weight the dissimilarity matrix among curves by either the trace-variogram or the multivariable variogram calculated with the coefficients of the basis functions. As an illustration the methodology is applied to a real data set corresponding to average daily temperatures measured at 35 Canadian weather stations.
منابع مشابه
A hierarchical model for spatially clustered disease rates.
Maps of regional disease rates are potentially useful tools in examining spatial patterns of disease and for identifying clusters. Bayes and empirical Bayes approaches to this problem have proven useful in smoothing crude maps of disease rates. In recent years, models including both spatially correlated random effects and spatially unstructured random effects have been very popular. The spatial...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملبه کارگیری روشهای خوشهبندی در ریزآرایه DNA
Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...
متن کاملSpatially weighted functional clustering of river network data
Incorporating spatial covariance into clustering has previously been considered for functional data to identify groups of functions which are similar across space. However, in the majority of situations that have been considered until now the most appropriate metric has been Euclidean distance. Directed networks present additional challenges in terms of estimating spatial covariance due to thei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009